Back
Forschung & Entwicklung
Pharma & Chemie
Prozess- & Qualitätskontrolle

Echtzeiteinblicke in die Methanol-Synthese

Wie faseroptische Temperaturmessung hilft, Power-to-X-Technologien für die Energiewende zu entwickeln

Faseroptische Systeme werden in den verschiedensten Disziplinen für die Messung von Temperaturen eingesetzt. Ihre Stärke spielen sie vor allem dort aus, wo eine große Anzahl von Messstellen benötigt wird, und gleichzeitig kompakte Bauform und geringe thermische Masse wichtig sind. Eine einzige, wenige Gramm schwere Faser mit einem Durchmesser von nur 150 µm kann hunderte von Sensoren ersetzen und gleichzeitig als Signalweg dienen. Für viele verfahrenstechnische Anwendungen rund um die aktuellen Power-to-X-Technologien sind sie deshalb eine gute Lösung, da sie ein lückenloses Temperaturprofil liefern. Oft sind sie die einzige Möglichkeit, die hohe Messdaten-Dichte zu realisieren, die erforderlich ist, um Prozesse zu bewerten und zu optimieren.

Im Prinzip bestehen faseroptische Messsysteme aus zwei Komponenten: einer Ausleseeinheit und der daran angeschlossenen, passiven Sensorfaser. Die Ausleseeinheit sendet Licht in die Faser und analysiert die reflektierten oder zurückgestreuten Anteile. Dabei wird zwischen punktförmig und verteilt messenden Systemen unterschieden. Punktförmige Sensorlösungen messen wie ihre elektrischen Pendants jeweils an einer definierten Messstelle. Für die chemische Verfahrenstechnik und artverwandte Disziplinen dagegen sind verteilt messenden Systeme interessanter, mit denen komplette Temperaturprofile mit dichter Messpunktfolge erfasst werden können.

Dazu müssen keine speziellen Sensoren in die Faser eingebracht werden. Vielmehr wird das vom Fasermaterial selbst zurückgestreute Licht ausgewertet, um die gewünschte Information über die Temperatur zu erhalten. Die gesamte Faser wird damit zum Sensor. Dabei lassen sich zwei Arten unterscheiden: Systeme, die auf dem Raman-Effekt basieren, eignen sich für Messstrecken bis zu einigen 10 Kilometern bei Messpunktabständen auf der Faser von bis zu 25 Zentimetern.

Die zweite Art bilden Systeme, die auf der Auswertung der Rayleigh-Streuung basieren und Auflösungen im Millimeterbereich erlauben. Damit ist praktisch jeder Punkt der Glasfaser ein Sensor. Herkömmliche Verfahren würden dafür Hunderte oder Tausende konventioneller Punktsensoren mit zugehörigen Leitungen benötigen, ein oft nicht akzeptabler Installations- und Kostenaufwand.

Im Bereich der chemischen Verfahrenstechnik finden faseroptische Systeme, die auf der Rayleigh-Streuung basieren, deshalb regen Anklang (Bild 1). Das Fraunhofer-Institut für Solare Energiesysteme ISE in Freiburg setzt sie beispielsweise in einer Miniplant-Anlage ein, die der Methanol-Synthese dient (Bild 2).

Bild 1: Bei verteilt messenden faseroptischen Systemen müssen keine Sensoren in die Faser eingebracht werden. Vielmehr wird vom Fasermaterial selbst zurückgestreutes Licht ausgewertet, um die gewünschte Temperaturinformation zu erhalten.
Bild 2: Scale-Down-Miniplant zur Erforschung der Methanol-Synthese (Fraunhofer ISE)

Mini-Plant für die Weiterentwicklung der Methanol-Synthese

Bei der Methanol-Synthese wird als Teil eines Power-to-Liquid-Prozesses Methanol aus Wasserstoff und CO2 hergestellt. Die Fraunhofer-Anlage dient dabei zur Erforschung der Synthese im industrienahen Maßstab. Schwerpunkte der Untersuchungen sind der dynamische Reaktorbetrieb sowie unkonventionelle Gaszusammensetzungen aus der Kopplung von elektrolytischem Wasserstoff mit CO2-haltigen Gasströmen.
Die Miniplant-Anlage setzt Wasserstoff und CO2 in einem kontinuierlichen Prozess zu Methanol um.

Dabei wird Wärme frei und es entsteht Wasser als Nebenprodukt. Zur fundierten großtechnischen Umsetzung dieses Verfahrens in Kombination mit einer Bioraffinerie sind auf dem aktuellen Stand der Wissenschaft jedoch noch einige Fragestellungen offen. So führen beispielsweise hohe CO2-Anteile im Synthesegas zu einer beschleunigten Alterung des eingesetzten Katalysators und zu verringerten chemischen Umsätzen.

Zudem können eventuelle Schwankungen in der Produktion des Wasserstoffs aus volatilen erneuerbaren Energien ebenso wie Schwankungen im gekoppelten Prozess zur Bereitstellung von CO2 einen dynamischen Synthesebetrieb erfordern. Eine solche Dynamik ist bei heutigen Prozessen, die überwiegend auf herkömmlich gewonnenen Grundstoffen basieren, jedoch noch nicht vorgesehen.

Messdaten für einen dynamischem Reaktorbetrieb

Das Fraunhofer ISE untersucht deshalb diese Randbedingungen für die Methanol-Synthese experimentell und mittels Simulationen. Der Fokus liegt dabei auf den katalytischen Vorgängen im Synthesereaktor. Dazu wurde eine dynamische Simulationsplattform entwickelt, die stationäre und dynamische Wärmeübergänge, das Reaktionsverhalten und zeitliche sowie räumliche Temperaturkurven berechnen kann.

Um die Ergebnisse mit möglichst geringem Aufwand und in kurzer Zeit auf eine Industrieanlage zu übertragen, ist der Synthesereaktor als Kernstück der Miniplant ein Scale-Down, also eine Maßstabsverkleinerung, einer industriellen Ausführung. Durch ein speziell angepasstes Kühlsystem kann im Betrieb der Anlage ein ähnliches thermisches und reaktionskinetisches Verhalten wie in einer großskaligen Anlage erreicht werden. Dadurch lassen sich Modellierungs- und Simulationsansätze aus der Literatur mithilfe dieser Anlage validieren und erweitern.

Die Daten dafür liefert ein zeitlich und räumlich hochauflösendes Analytiksystem, das in der Miniplant integriert ist: Mithilfe der Fourier-Transformations-Infrarotspektroskopie (FT-IR) lässt sich die Konzentration der Synthesegase dynamisch messen. Für die ortsaufgelöste Temperaturmessung (Bild 3) im Inneren des Reaktors sorgt ein faseroptisches Messsystem (ODiSI 6000 Serie) von Polytec. Es arbeitet mit einer Auflösung von 0,1 °C und wurde bereits in vielen verfahrenstechnischen Prozessen zur Temperaturerfassung außerhalb des Fraunhofer ISE eingesetzt.

Bild 3: Wärmeverteilung über die Reaktorlänge im zeitlichen Verlauf nach einem Lastwechsel. Das Ergebnis der faseroptischen Messung (links) im Vergleich zur Simulation (rechts). (Urheber: Nestler, Florian (2022): Dynamic Operation of Power-to-X Processes Demonstrated by Methanol Synthesis. Dissertation. DOI: 10.5445/IR/1000150267)

Echtzeitaussagen über die Vorgänge im Reaktor

Werden die Daten von Temperaturmessung und FT-IR kombiniert, sind Echtzeit-Aussagen im Sekundentakt über die Vorgänge im Reaktor möglich. Die Messdaten des Analytiksystems lassen sich dann zur Anpassung der Modellparameter sowohl für die stationäre als auch für die dynamische Simulation nutzen. Zukünftig sind so neben Aussagen zur Reaktionskinetik auch Erkenntnisse über die Desaktivierung des Katalysators in Langzeitmessungen möglich.

Unterschiedliche Betriebspunkte können sehr schnell charakterisiert werden, wodurch sich selbst umfangreiche Parameterräume zügig abarbeiten lassen. Die gewonnenen Erkenntnisse werden mit der bestehenden dynamischen Simulationsplattform des Fraunhofer ISE verknüpft. Dies erlaubt die Untersuchung von Lastwechseln, wie sie zukünftig in realen Industrieanlagen auftreten würden.

Daraus lassen sich wiederum wertvolle Auslegungsdaten generieren, die dazu beitragen, dass Methanol aus nachhaltigen Rohstoffen und erneuerbarem Strom gewonnen und somit zukünftig in verschiedenen Anwendungen als Energiespeicher, Chemikalie, sowie Kraftstoff(additiv) genutzt werden kann.

Faseroptische Sensorik nutzt die Rayleigh-Strahlung

Bei der Rayleigh-Sensorik wird Laserlicht in die Glasfaser eingekoppelt und das vom Fasermaterial rückgestreute Licht mit hoher Auflösung über ein optisches Messverfahren räumlich abgetastet. Im Ergebnis erhält man ein charakteristisches Muster entlang der Faser, den sogenannten Fingerprint, der für jeden Abschnitt unterschiedlich, aber äußerst stabil und reproduzierbar ist.

Ursache hierfür sind lokale Brechzahlschwankungen und Defekte, die sich statistisch über die Faser verteilen. Bei äußeren Dehnungs- oder Temperaturänderungen wird dieser Fingerprint in eindeutiger Weise auseinander- oder zusammengeschoben, sodass die Änderung des lokalen Rayleigh-Musters in Temperatur oder Dehnung umgerechnet werden kann. Da jeder Punkt der Faser für diesen Effekt empfindlich ist, stellt die gesamte Faser in voller Länge einen verteilt messenden Sensor dar. Die erreichbare räumliche Auflösung beträgt 1 Millimeter. Bei einer Messlänge von beispielsweise 10 Metern entspricht dies einer Anzahl von 10.000 Sensoren. Bei Verwendung spezieller Fasern ergibt sich ein Temperaturmessbereich von ca. -200 °C bis zu +640 °C.

Über das Fraunhofer-Institut für Solare Energiesysteme ISE

Das Fraunhofer-Institut für Solare Energiesysteme ISE in Freiburg ist mit rund 1.400 Mitarbeitenden das größte Solarforschungsinstitut Europas. Die Forschungsschwerpunkte sind Energiebereitstellung, Energieverteilung, Energiespeicherung und Energienutzung. In den Geschäftsfeldern Photovoltaik, energieeffiziente Gebäude, solarthermische Kraftwerke und Industrieprozesse, Wasserstofftechnologien und elektrische Energiespeicher sowie Leistungselektronik, Netze und intelligente Systeme entwickelt das Institut Materialien, Komponenten, Systeme und Verfahren. Zudem werden Analysen, Studien und Beratungen durchgeführt und Prüf- und Zertifizierungsverfahren angeboten.

Bildnachweise: Soweit nachfolgend nicht anders aufgeführt bei Polytec. Titelbild/Bild 2: Fraunhofer ISE; Bild 3: Nestler, Florian (2022): Dynamic Operation of Power-to-X Processes Demonstrated by Methanol Synthesis. Dissertation. DOI: 10.5445/IR/1000150267)

Unsere Autoren

M.A. Ellen-Christine Reiff
Redaktionsbüro Stutensee, Germany
Dipl.-Physiker Jörg Schwarz
Photonics Sales Polytec GmbH
info@polytec.com

Verwandte Artikel

Gepulstes UV-Licht gegen Keime

Hygiene ist in allen Bereichen der Lebensmittelindustrie wichtig. Besonders gilt das für Milchprodukte wie in der Joghurthabfüllung, denn sie sind sehr anfällig für Verunreinigungen durch Mikroorganismen u…

10 min

Ein moderner Ansatz für keimfreie Lebensmittelverpackungen

Seit den 1960er Jahren spielen keimfreie Verpackungen eine wichtige Rolle für die Lebensmittelsicherheit. Dennoch gab es seit dieser Zeit kaum Innovationen. Chemikalien und Hitze sind nach wie vor die gäng…

4 min

Mehr Möglichkeiten für Verformungstests in der Materialprüfung

In der Materialforschung gilt die digitale Bildkorrelation (Digital Image Correlation, DIC) als etabliertes Verfahren, um sehr genau und berührungslos Verformungen zu erkennen. Das gilt für Zug-, Druck- un…

5 min

Inline-Messsystem für Pulverbeschichtungen

Bei Pulverbeschichtungen kommt es auf die Qualität der Beschichtung an. Eine Messung ihrer Dicke oder Gleichmäßigkeit ist – vor allem an kritischen Stellen – bei der Qualitätskontrolle unerlässlich. System…

4 min

Kontinuierliche faseroptische Dehnungsmessung

Ein Teil der Brücken in Deutschland ist mittlerweile in die Jahre gekommen und zudem nicht für die durch das heutige Verkehrsaufkommen ständig steigende Belastung ausgelegt. Aktuell stehen deshalb die Vera…

6 min

Präzise Schichtdickenbestimmung ohne Referenzieren

Bei vielen Produkten kommt es auf die Qualität der Beschichtung an, zum Beispiel auf die Materialdicke, die Farbe, den Glanz oder die Anhaftung einer oder mehrerer Schichten auf einem Untergrund. Wozu auch…

5 min

Verteilte faseroptische Temperatur- und Dehnungsmessung mit sehr hoher räumlicher Auflösung

Durch ortsaufgelöstes Abtasten der Rayleigh-Streuung entlang einer Standardglasfaser lässt sich ein verteilt messendes Sensorsystem realisieren, bei dem jeder Punkt der Glasfaser als Sensor wirkt. Dieses n…

10 min

Faser-Bragg-Sensoren in der Praxis

In Windkraftanlagen werden faseroptische Sensoren nicht nur zur Überwachung, sondern auch zur Steuerung eingesetzt, z.B. zur Rotorblattverstellung aufgrund von Belastungsmessungen der Blätter.

4 min

Verteilte faseroptische Sensorik für geotechnische Überwachung

Steine, Blöcke, Stahl, Zement, Beton und Mörtelschlamm und dies alles in Kombination mit großen, schweren, ungelenken und lärmenden Baumaschinen, das klingt nicht gerade nach dem idealen Ort für eine fragi…

5 min

Messung von Temperaturprofilen in einer Reibkupplung

Reibkupplungen werden in Millionen von Automobilen eingesetzt, um das Drehmoment des Motors auf den Antriebsstrang zu übertragen. Bis heute allerdings sind die physikalischen Vorgänge bei der reibschlüssig…

4 min

Xenon-Doppelpuls bringt Durchbruch beim photonischen Sintern

Die gedruckte Elektronik erobert den Markt der industriellen Anwendungen. Die Technik, die dabei zum Einsatz kommt, ist erprobt. Aber längst nicht alle Anwendungen lassen sich mit diesen Techniken realisie…

2 min

Faseroptische Temperaturmessung in der chemischen Verfahrenstechnik

Herkömmliche Messverfahren kommen schnell an ihre Grenzen, wenn elektromagnetische Unempfindlichkeit oder eine hohe Messpunktdichte gefordert wird, oder wenn chemisch aggressive Umgebungsbedingungen herrsc…

10 min

Xenon UV-Blitzlampen in der fotochemischen Sterilisation

Der Erfolg steriler Umgebungen oder Räume der Pharma-, Medizin- und Nahrungsmittelbranche hängt davon ab, dass Materialien hinein- und herausgebracht werden können, ohne mikrobiologische Verunreinigungen z…

3 min

Photonisches Sintern ermöglicht gedruckte Elektronik in hohen Auflagen

Die Technik der gedruckten Elektronik hat das Pionierstadium hinter sich, erste industrielle Anwendungen laufen bereits. Die möglichen Einsatzgebiete sind vielfältig, aber es fehlte bislang noch an schlüss…

5 min

Fotothermisches Messverfahren für intransparente Schichten und alle gängigen Substrate

Bei vielen Industrieprodukten spielt die Qualität von Beschichtungen eine wichtige Rolle. Zum Beispiel die Materialdicke, die Farbe, der Glanz oder die Anhaftung einer oder mehrerer Schichten auf einem Unt…

5 min

UV-Technologie für vielfältige Anwendungen

Wenn Polytec sein Portfolio erweitert, muss die neue Produktlinie nicht nur qualitativ auf hohem Niveau, ausgereift und auf dem neuesten Stand der Technik sein, sondern auch aufgrund der Zukunftsfähigkeit …

5 min

Thermografische Komplettlösungen für Sicherheit und Prozesskontrolle

Thermografische Verfahren, deren typische Falschfarbenbilder Temperaturen visualisieren, eignen sich für viele Bereiche. Besonders vielfältig sind die Anwendungsmöglichkeiten in der Industrie bei der Überw…

5 min
Lade mehr