Back
General R&D
Civil & structural engineering

Validation on bridge superstructures

A modal-based monitoring system

More and more, the increasing stress on infrastructures provides the challenge of investigating and evaluating the existing structures with regard to safety and the resulting remaining useful life. Reliable, technically feasible and economical solutions for metrological monitoring are necessary in order to guarantee structural safety and fitness for purpose. This is the key prerequisite for obtaining meaningful information about damage processes and the current structural properties.

A metrological solution model for a modal-based monitoring system for bridge superstructures is being developed at the Reinforced Concrete Department of the Institute for Reinforced Concrete and Building Materials at KIT (Karlsruhe Institute of Technology) as part of the ZIM cooperation project "Development of a system for the modal-based damage analysis and monitoring of bridge superstructures." Like all structures, bridges exhibit vibration characteristics when excited, which can be described by modal parameters such as eigenfrequencies and eigenmodes.

The basic consideration for a modal-based monitoring system is that damage processes are accompanied by stiffness changes in the structure, which in turn lead to measurable changes in the modal parameters. The modal parameters, eigenfrequencies and eigenmodes can be measured and characterized in order to obtain in-depth information about the bridge condition, its load-bearing capacity and the remaining service life.

Setup

Component tests were carried out at the Materials Research and Testing Institute in Karlsruhe under the direction of Mareike Kohm for the experimental verification and testing of a modal-based monitoring system. A 6.5 m long simple reinforced concrete beam served as an analogous model for the bridge. The reinforced concrete beam was intact at the beginning of the experiment and was progressively damaged during the course of the investigations by a path-controlled hydraulic cylinder; see Figure 1.

Incremental crack formation occurred as a result of the centric bending tensile stress on the reinforced concrete beam. This was documented for subsequent evaluation both manually and with the GOM Aramis optical measurement system. Acceleration time histories were recorded at 25 measuring points using MEMS-based accelerometers from Semex-Engcon for the metrological testing and verification of the modal parameters. The Polytec Multipoint Vibrometer (MPV-800 system) with 27 sensor heads on 4 optical units was used for the same 25 measuring points and 2 additional measuring points on the support axes in order to check and verify the metrological results of the accelerometers.

Figure 1: Measurement setup. MPV laser sensor heads (mounted above on the Bosch stand) and MEMS sensors (green objects on the reinforced concrete beam).

The MPV measures vibrations on a non-contact basis and is based on the laser Doppler vibrometry principle. Each optical unit of the MPV con tains eight sensor heads that can acquire measurement data simultaneously. The MPV is therefore particularly suitable for non-repeatable events such as damage. Two Fabry-Perot fiber sensors (OS) from Luna Technologies (distributed by Polytec) were also used as accelerometers for additional verification of the measurement data.

The beam was excited at two positions by means of a simple manual rubber hammer. The modal parameters were then determined using the Frequency Domain Decomposition Method. This method is one of the processes used in Operational Modal Analysis, where the modal parameters are estimated solely on the basis of the response vibrations of the structure. The excitation forces therefore do not have to be measured. When transferred to real bridge structures, this means that natural non-measurable excitation sources such as traffic, wind and microquakes can be used, with the result that there is no traffic disruption during the monitoring measure.

The positioning of the sensors on the reinforced concrete beam can be seen in Figure 1 and Figure 2.

Figure 2: Scheme of the measurement setup

The 27 MPV sensor heads were aligned with the top of the reinforced concrete beam (see Figure 3) and attached to several assembled Bosch profiles. All 27 measuring heads of the four optical units were operated in 1D mode. The OS measuring systems were attached to two lateral measuring points at the height of the MEMS sensors. All measuring points had to be acquired synchronously for each system for the comparison and verification of the MEMS with the MPV system. The MPV-800, which can acquire up to 48 channels simultaneously thanks to the synchronous measurement data acquisition, was developed precisely for this task.

Figure 3: Test sequences and excitation with the rubber hammer at excitation position 1 (maximum of the vibration antinode of the 1st eigenmode)

Test procedure

Ten measurements per position were recorded at a defined trigger threshold by means of the three measuring systems MPV, MEMS and OS. The sample time was 15s in order to acquire the decay of the vibration in the time domain. The first series of measurements per excitation point (Pos. 1 and Pos. 2) was taken before the initial loading with the hydraulic cylinder. This measurement was regarded as an undamaged reference state and is referred to as BE00 in the following. The reinforced concrete beam was loaded and unloaded by means of a hydraulic cylinder located in the middle of the test beam after each complete series of measurements at both excitation positions. The excitation of the test beam with the rubber hammer was always provided in the unloaded state. 16 stress levels were recorded until the reinforced concrete beam failed.

Evaluation of eigenfrequencies of vibrometer data and MEMS sensors using the FDD method

The assessment using the MPV Multipoint Vibrometer enabled a clear visualization right from the start (BE00: measurement in undamaged condition) of measurement data in both the time and the frequency domain including resonance frequencies and corresponding deflection shapes in the MPV software. With the other two sensor systems a graphical display of the response spectra and eigenmodes were not possible on site. These had to be evaluated in a post-processing. Figure 4 shows the time measurement for BE00 and the first to third eigenmode of for BE00 (1st eigenfrequency 11 Hz, 2nd eigenfrequency 45 Hz, 3rd eigenfrequency 92 Hz).

Figure 4: Top-down: BE00 Pos1 vibrational velocity measurement in the time domain / BE00 Pos1 10 Hz 1st eigenmode / BE00 Pos1 10 Hz 1st eigenmode / BE00 Pos1 92 Hz 3rd eigenmode

Overall conclusion

By and large, no significant differences between the three sensor types can be found. As a verification instrument, the MPV-800 Multipoint Vibrometer could therefore confirm the results of the MEMS sensors (monitoring system). The MPV therefore offers an option for the same measurement accuracy as contact sensors, while having the advantage of measuring in a non-contact and flexible way, thus avoiding any influence on the measurement result itself for gathering the true dynamical behaviour.

Images courtesy of the authors unless otherwise specified. Cover image: QinJin/shutterstock.com

Our Authors

Dr.-Ing. Mareike Kohm
Institute of Concrete Structures and Building Materials, KIT - Karlsruhe Institute of Technology
www.imb.kit.edu
Joline Dank M.Sc.
Application Services Business Unit Vibrometry, Polytec GmbH
info@polytec.com

Related Articles

Laser-Doppler-Vibrometer set standards in the development of electric drives

Electric machines are increasingly being used as the primary drive technology in vehicles. The acoustic behavior of the drive is a key factor in the perceived quality of electric vehicles. Numerical method…

5 min

On self-supporting and self-aligning compact shakers

Artificial excitation is the basis for various noise and vibration techniques, from experimental modal analysis, over transfer path analysis, load identification, simulation model correlation, hybrid model…

10 min

Inertial shakers for modal testing

If you would like to test the vibration behavior of an object that is not vibrating by its own, you have to excite it externally. For modal tests both an electromagnetic shaker and a modal hammer are commo…

6 min

How to measure low-frequency acoustic communication of African elephants

A recent study published in the European Physical Journal Special Topics introduces a pioneering application of laser Doppler vibrometry (LDV) to better comprehend African elephant vocalizations and their …

4 min

When to choose a laser Doppler vibrometer for vibration measurement

In the realm of vibration testing, a significant obstacle arises in the form of mass loading. The behavior of a dynamic vibration sample, or device under test (DUT), is profoundly influenced by the additio…

5 min

Single electrode transduction of contour modes in piezoelectric disk resonators

Piezoelectric disk resonators are designed to transduce specific contour mode bulk acoustic wave (BAW) resonant shapes. Utilizing a unique property of lead magnesium niobite-lead titanate (PMN-PT) thin fil…

4 min

Celebrating the iconic career of Professor Rong Z. Gan

We had a chance to virtually sit down for an interview with Prof. Rong Zhu Gan. In her field, she is one of those personalities that needs no introduction. For the uninitiated, she is the George Lynn Cross…

3 min

Using toys to investigate the complex physics of quasi-periodic metamaterials

Metamaterials are artificial assemblies of known materials in particular arrangements that result in novel properties not encountered in naturally occurring materials. Among many applications, they hold gr…

6 min

Boundary conditions, measurement inaccuracy, and repeatability

MAN Energy Solutions offers a comprehensive engine portfolio, propeller, and stern equipment and turbochargers for the maritime sector. Reliability is an essential aspect of our sector and especially vital…

5 min

Non-contact alternative to dynamic and viscoelastic mechanical testing in cartilage

Osteoarthritis, a degenerative disease in the joint, is a condition that is afflicting approximately 14% of adults. Understanding the dynamics of the joint cartilage is crucial for research and for finding…

6 min

Analyzing operational deflection shapes on loudspeakers

Noise protection and control play a major role in both professional and private environments. Airborne sound measurements help identify acoustic paths as a means of noise reduction as standard testing meth…

4 min

Manipulation of complex fluids with SAW-based acoustofluidics

Surface acoustic wave (SAW)-based acoustofluidics combines microfluidics with active microacoustic fields. This allows to realize numerous Lab-on-a-Chip operations, reaching from fluid manipulation includi…

3 min

A new driving mechanism for acoustofluidics*

Acoustofluidics is the active manipulation of fluids as well as of immersed particles or cells at the micro- and nanoscale and is a key technology for life sciences. Acoustic waves, more precisely, ultraso…

5 min

Noise and modal analysis for quiet and reliable operation

The growth of the drone market is multi-faceted: growing concerns about national and border security drive the need for advanced aerial surveillance, package delivery services experience an increased deman…

6 min

Vibration analysis helps to protect art

To organize traveling exhibitions, museums like the Georgia O’Keeffe Museum in Santa Fe, New Mexico supplement their own collection with temporary loans from other museums and private collections. In 2017,…

4 min
Load More